Isotypical components + highest weight | \(\displaystyle V_{2\psi_{2}-4\psi_{3}-2\psi_{4}} \) → (0, 0, 2, -4, -2) | \(\displaystyle V_{2\psi_{1}-2\psi_{2}-2\psi_{3}-2\psi_{4}} \) → (0, 2, -2, -2, -2) | \(\displaystyle V_{-2\psi_{1}-2\psi_{3}} \) → (0, -2, 0, -2, 0) | \(\displaystyle V_{2\psi_{1}+2\psi_{2}-2\psi_{3}-2\psi_{4}} \) → (0, 2, 2, -2, -2) | \(\displaystyle V_{4\psi_{1}-2\psi_{2}-2\psi_{4}} \) → (0, 4, -2, 0, -2) | \(\displaystyle V_{-2\psi_{1}+4\psi_{2}-2\psi_{3}} \) → (0, -2, 4, -2, 0) | \(\displaystyle V_{0} \) → (0, 0, 0, 0, 0) | \(\displaystyle V_{2\psi_{1}-4\psi_{2}+2\psi_{3}} \) → (0, 2, -4, 2, 0) | \(\displaystyle V_{-4\psi_{1}+2\psi_{2}+2\psi_{4}} \) → (0, -4, 2, 0, 2) | \(\displaystyle V_{-2\psi_{1}-2\psi_{2}+2\psi_{3}+2\psi_{4}} \) → (0, -2, -2, 2, 2) | \(\displaystyle V_{2\psi_{1}+2\psi_{3}} \) → (0, 2, 0, 2, 0) | \(\displaystyle V_{-2\psi_{1}+2\psi_{2}+2\psi_{3}+2\psi_{4}} \) → (0, -2, 2, 2, 2) | \(\displaystyle V_{-2\psi_{2}+4\psi_{3}+2\psi_{4}} \) → (0, 0, -2, 4, 2) | \(\displaystyle V_{\omega_{1}-2\psi_{3}-4\psi_{4}} \) → (1, 0, 0, -2, -4) | \(\displaystyle V_{\omega_{1}+2\psi_{1}-4\psi_{4}} \) → (1, 2, 0, 0, -4) | \(\displaystyle V_{\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{4}} \) → (1, -2, 2, 0, -2) | \(\displaystyle V_{\omega_{1}-2\psi_{2}+2\psi_{3}-2\psi_{4}} \) → (1, 0, -2, 2, -2) | \(\displaystyle V_{\omega_{1}+2\psi_{2}-2\psi_{3}+2\psi_{4}} \) → (1, 0, 2, -2, 2) | \(\displaystyle V_{\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{4}} \) → (1, 2, -2, 0, 2) | \(\displaystyle V_{\omega_{1}-2\psi_{1}+4\psi_{4}} \) → (1, -2, 0, 0, 4) | \(\displaystyle V_{\omega_{1}+2\psi_{3}+4\psi_{4}} \) → (1, 0, 0, 2, 4) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0, 0) |
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | \(W_{17}\) | \(W_{18}\) | \(W_{19}\) | \(W_{20}\) | \(W_{21}\) | \(W_{22}\) |
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | | | | | | | Cartan of centralizer component. | | | | | | | | | | | | | | | Semisimple subalgebra component. \(-g_{15}\) | \(h_{5}+h_{4}+h_{3}+h_{2}+h_{1}\) | \(2g_{-15}\) |
|
|
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) |
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\psi_{2}-4\psi_{3}-2\psi_{4}\) | \(2\psi_{1}-2\psi_{2}-2\psi_{3}-2\psi_{4}\) | \(-2\psi_{1}-2\psi_{3}\) | \(2\psi_{1}+2\psi_{2}-2\psi_{3}-2\psi_{4}\) | \(4\psi_{1}-2\psi_{2}-2\psi_{4}\) | \(-2\psi_{1}+4\psi_{2}-2\psi_{3}\) | \(0\) | \(2\psi_{1}-4\psi_{2}+2\psi_{3}\) | \(-4\psi_{1}+2\psi_{2}+2\psi_{4}\) | \(-2\psi_{1}-2\psi_{2}+2\psi_{3}+2\psi_{4}\) | \(2\psi_{1}+2\psi_{3}\) | \(-2\psi_{1}+2\psi_{2}+2\psi_{3}+2\psi_{4}\) | \(-2\psi_{2}+4\psi_{3}+2\psi_{4}\) | \(\omega_{1}-2\psi_{3}-4\psi_{4}\) \(-\omega_{1}-2\psi_{3}-4\psi_{4}\) | \(\omega_{1}+2\psi_{1}-4\psi_{4}\) \(-\omega_{1}+2\psi_{1}-4\psi_{4}\) | \(\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{4}\) \(-\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{4}\) | \(\omega_{1}-2\psi_{2}+2\psi_{3}-2\psi_{4}\) \(-\omega_{1}-2\psi_{2}+2\psi_{3}-2\psi_{4}\) | \(\omega_{1}+2\psi_{2}-2\psi_{3}+2\psi_{4}\) \(-\omega_{1}+2\psi_{2}-2\psi_{3}+2\psi_{4}\) | \(\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{4}\) \(-\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{4}\) | \(\omega_{1}-2\psi_{1}+4\psi_{4}\) \(-\omega_{1}-2\psi_{1}+4\psi_{4}\) | \(\omega_{1}+2\psi_{3}+4\psi_{4}\) \(-\omega_{1}+2\psi_{3}+4\psi_{4}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) |
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\psi_{2}-4\psi_{3}-2\psi_{4}}\) | \(\displaystyle M_{2\psi_{1}-2\psi_{2}-2\psi_{3}-2\psi_{4}}\) | \(\displaystyle M_{-2\psi_{1}-2\psi_{3}}\) | \(\displaystyle M_{2\psi_{1}+2\psi_{2}-2\psi_{3}-2\psi_{4}}\) | \(\displaystyle M_{4\psi_{1}-2\psi_{2}-2\psi_{4}}\) | \(\displaystyle M_{-2\psi_{1}+4\psi_{2}-2\psi_{3}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\psi_{1}-4\psi_{2}+2\psi_{3}}\) | \(\displaystyle M_{-4\psi_{1}+2\psi_{2}+2\psi_{4}}\) | \(\displaystyle M_{-2\psi_{1}-2\psi_{2}+2\psi_{3}+2\psi_{4}}\) | \(\displaystyle M_{2\psi_{1}+2\psi_{3}}\) | \(\displaystyle M_{-2\psi_{1}+2\psi_{2}+2\psi_{3}+2\psi_{4}}\) | \(\displaystyle M_{-2\psi_{2}+4\psi_{3}+2\psi_{4}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{3}-4\psi_{4}}\oplus M_{-\omega_{1}-2\psi_{3}-4\psi_{4}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}-4\psi_{4}}\oplus M_{-\omega_{1}+2\psi_{1}-4\psi_{4}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{4}}\oplus M_{-\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{4}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{2}+2\psi_{3}-2\psi_{4}}\oplus M_{-\omega_{1}-2\psi_{2}+2\psi_{3}-2\psi_{4}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{2}-2\psi_{3}+2\psi_{4}}\oplus M_{-\omega_{1}+2\psi_{2}-2\psi_{3}+2\psi_{4}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{4}}\oplus M_{-\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{4}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{1}+4\psi_{4}}\oplus M_{-\omega_{1}-2\psi_{1}+4\psi_{4}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{3}+4\psi_{4}}\oplus M_{-\omega_{1}+2\psi_{3}+4\psi_{4}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) |
Isotypic character | \(\displaystyle M_{2\psi_{2}-4\psi_{3}-2\psi_{4}}\) | \(\displaystyle M_{2\psi_{1}-2\psi_{2}-2\psi_{3}-2\psi_{4}}\) | \(\displaystyle M_{-2\psi_{1}-2\psi_{3}}\) | \(\displaystyle M_{2\psi_{1}+2\psi_{2}-2\psi_{3}-2\psi_{4}}\) | \(\displaystyle M_{4\psi_{1}-2\psi_{2}-2\psi_{4}}\) | \(\displaystyle M_{-2\psi_{1}+4\psi_{2}-2\psi_{3}}\) | \(\displaystyle 4M_{0}\) | \(\displaystyle M_{2\psi_{1}-4\psi_{2}+2\psi_{3}}\) | \(\displaystyle M_{-4\psi_{1}+2\psi_{2}+2\psi_{4}}\) | \(\displaystyle M_{-2\psi_{1}-2\psi_{2}+2\psi_{3}+2\psi_{4}}\) | \(\displaystyle M_{2\psi_{1}+2\psi_{3}}\) | \(\displaystyle M_{-2\psi_{1}+2\psi_{2}+2\psi_{3}+2\psi_{4}}\) | \(\displaystyle M_{-2\psi_{2}+4\psi_{3}+2\psi_{4}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{3}-4\psi_{4}}\oplus M_{-\omega_{1}-2\psi_{3}-4\psi_{4}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}-4\psi_{4}}\oplus M_{-\omega_{1}+2\psi_{1}-4\psi_{4}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{4}}\oplus M_{-\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{4}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{2}+2\psi_{3}-2\psi_{4}}\oplus M_{-\omega_{1}-2\psi_{2}+2\psi_{3}-2\psi_{4}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{2}-2\psi_{3}+2\psi_{4}}\oplus M_{-\omega_{1}+2\psi_{2}-2\psi_{3}+2\psi_{4}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{4}}\oplus M_{-\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{4}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{1}+4\psi_{4}}\oplus M_{-\omega_{1}-2\psi_{1}+4\psi_{4}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{3}+4\psi_{4}}\oplus M_{-\omega_{1}+2\psi_{3}+4\psi_{4}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) |